
Audit Report

Mon Nov 11 2024

contact@bitslab.xyz https://twitter.com/scalebit_

O.Lab

https://twitter.com/scalebit_
https://www.scalebit.xyz/

O.Lab Audit Report

1 Executive Summary

1.1 Project Information

Description The O.Lab CTF Exchange is an exchange protocol that
facilitates atomic swaps between Conditional Tokens
Framework ERC1155 assets and an ERC20 collateral asset

Type DeFi

Auditors ScaleBit

Timeline Wed Oct 09 2024 - Mon Nov 11 2024

Languages Solidity

Platform BSC

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/OpinionLabs/prediction-market-smart-
contract-v2

Commits 7735d82736955d8e8fde38a9981c67cb8345d4f6

1/24

https://github.com/OpinionLabs/prediction-market-smart-contract-v2
https://github.com/OpinionLabs/prediction-market-smart-contract-v2
https://github.com/OpinionLabs/prediction-market-smart-contract-v2/tree/7735d82736955d8e8fde38a9981c67cb8345d4f6

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

BEX ctf-exchange/src/exchange/BaseEx
change.sol

e0cf90fc984237ddf7dc6bf8282dc0
0459fba55c

OST ctf-exchange/src/exchange/librarie
s/OrderStructs.sol

c725f8e0c47b682f3848b7c132081
df11485facf

OLABSL ctf-exchange/src/exchange/librarie
s/OLABSafeLib.sol

07c3463e58fe9c896bde77e5fedc4
3d0f281d004

CHE ctf-exchange/src/exchange/librarie
s/CalculatorHelper.sol

24db647d321ec7ccb98ea7828c41
0c35b6bea4d7

THE1 ctf-exchange/src/exchange/librarie
s/TransferHelper.sol

943d67899c1f7f208ab33c8a6b2eb
88cac95dd43

OLABPL ctf-exchange/src/exchange/librarie
s/OLABProxyLib.sol

e245ab584e0fb3ffa1ef9ef5459909
1f0cdd8b6d

TRA ctf-exchange/src/exchange/mixins/
Trading.sol

684d13f230ee3f0b067e69e659010
2af9d6f78b8

OLABFH ctf-exchange/src/exchange/mixins/
OLABFactoryHelper.sol

ceaaa9e055c465c9ce3f0b36e0c73
88ee769480d

REG ctf-exchange/src/exchange/mixins/
Registry.sol

1fdcc435c425c3b62833e0c5d2620
6b5e4db6e8c

AOP ctf-exchange/src/exchange/mixins/
AssetOperations.sol

158d0b544ebe1402b42ed0a4b9df
2a7ac4758cb5

ASS ctf-exchange/src/exchange/mixins/
Assets.sol

944dbc20dbea265a9f8bcb465518
8b5b27038a1c

2/24

SIG ctf-exchange/src/exchange/mixins/
Signatures.sol

d3cad6b92797444799726efc73a61
9f480be7abe

AUT1 ctf-exchange/src/exchange/mixins/
Auth.sol

ceb3e5297657bef3f92fa187f8989d
f45859b318

NMA ctf-exchange/src/exchange/mixins/
NonceManager.sol

70ad6c00164ddc647eacb92df803f
6799d0f418b

PAU ctf-exchange/src/exchange/mixins/
Pausable.sol

2826bcafe42b143e4256063b9457
131e9aeec197

FEE ctf-exchange/src/exchange/mixins/
Fees.sol

be16867c573dfb1668285b4c118f1
abe1baedcee

HAS ctf-exchange/src/exchange/mixins/
Hashing.sol

5eaaaa2365d0b603268efbc02489
6d3fde14b4a1

CTFE ctf-exchange/src/exchange/CTFExc
hange.sol

e867efc1cd30feafd4c49db963fe6f
15cfb1a071

CTO conditional-tokens-contracts/contr
acts/ConditionalTokens.sol

8caacb722b80fd0dac21221b3ce9
defcd15183a1

3/24

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 8 5 3

Informational 2 1 1

Minor 4 2 2

Medium 0 0 0

Major 2 2 0

Critical 0 0 0

4/24

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

5/24

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

6/24

2 Summary

This report has been commissioned by O.Lab to identify any potential issues and
vulnerabilities in the source code of the CTF Exchange smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 8 issues of varying severity, listed below.

ID Title Severity Status

CHE-1 Zero-Fee Orders May Lead to
Revenue Loss and Potential Abuse

Minor Fixed

CTO-1 Use safeTransferFrom() instead of
transferFrom()

Major Fixed

CTO-2 The Protocol does not Support Fee-
On-Transfer Tokens

Informational Acknowledged

CTO-3 The collateralToken Lacks
Validation

Informational Fixed

TRA-1 Draining the Order Maker's Funds
without Providing any Tokens in
return

Major Fixed

TRA-2 The Operator Executing Invalid
Order Fills can Result in Financial
Losses

Minor Fixed

TRA-3 Simplify Sending Fees Minor Acknowledged

TRA-4 Unable To Return Unexpected
Tokens

Minor Acknowledged

7/24

8/24

3 Participant Process

Here are the relevant actors with their respective abilities within the CTF Exchange Smart
Contract :
Admin

The admin can set the treasury through the setTreasury function.

The admin can pause trading through the pauseTrading function.

The admin can unpause trading through the unpauseTrading function.

The admin can set a new Proxy Wallet factory through the setProxyFactory function.

The admin can set a new safe factory through the setSafeFactory function.

Operator

The operator can fill an order through the fillOrder function.

The operator can fill multiple orders through the fillOrders function.

The operator can match a taker order against a list of maker orders through the

matchOrders function.

The operator can register a tokenId, its complement, and its conditionId for trading

through the registerToken function.

User

The uses can cancel an order through the cancelOrder function.

The uses can cancel a set of orders through the cancelOrders function.

9/24

4 Findings

CHE-1 Zero-Fee Orders May Lead to Revenue Loss and
Potential Abuse

Severity: Minor

Status: Fixed

Code Location:

ctf-exchange/src/exchange/libraries/CalculatorHelper.sol#27-49

Descriptions:

In the current implementation of the calculateFee function, if an order's feeRateBps is set

to 0, no fees will be charged. This design allows for the creation of completely free

transactions, which may result in extensive use of zero-fee orders potentially significantly

reducing the protocol's revenue. Even though no fees are charged, processing these orders

still consumes system resources.

 functionfunction calculateFeecalculateFee((
 uint256 feeRateBpsuint256 feeRateBps,,
 uint256 outcomeTokensuint256 outcomeTokens,,
 uint256 makerAmountuint256 makerAmount,,
 uint256 takerAmountuint256 takerAmount,,
 SideSide side side
)) internal pure internal pure returnsreturns ((uint256 feeuint256 fee)) {{
 ifif ((feeRateBps feeRateBps >> 00)) {{
 uint256 price uint256 price == _calculatePrice_calculatePrice((makerAmountmakerAmount,, takerAmount takerAmount,, side side));;
 ifif ((price price >> 00 &&&& price price <=<= ONEONE)) {{
 ifif ((side side ==== SideSide..BUYBUY)) {{
 // Fee charged on Token Proceeds:// Fee charged on Token Proceeds:
 // baseRate * min(price, 1-price) * (outcomeTokens/price)// baseRate * min(price, 1-price) * (outcomeTokens/price)
 fee fee == ((feeRateBps feeRateBps ** minmin((priceprice,, ONEONE -- price price)) ** outcomeTokens outcomeTokens)) // ((price price **
BPS_DIVISORBPS_DIVISOR));;
 }} elseelse {{
 // Fee charged on Collateral proceeds:// Fee charged on Collateral proceeds:
 // baseRate * min(price, 1-price) * outcomeTokens// baseRate * min(price, 1-price) * outcomeTokens
 fee fee == feeRateBps feeRateBps ** minmin((priceprice,, ONEONE -- price price)) ** outcomeTokens outcomeTokens // ((BPS_DIVISORBPS_DIVISOR **
ONEONE));;
 }}

10/24

 }}
 }}
 }}

Suggestion:

It is recommended to set a minimum fee rate.

Resolution:

This issue has been fixed. The client has added an off-chain verification mechanism.

11/24

CTO-1 Use safeTransferFrom() instead of transferFrom()

Severity: Major

Status: Fixed

Code Location:

conditional-tokens-contracts/contracts/ConditionalTokens.sol#135

Descriptions:

In the splitPosition() function, if parentCollectionId == bytes32(0) , the protocol calls

collateralToken.transferFrom() to transfer a certain amount of collateral tokens from

msg.sender and uses require to check if the returned result is true.

 // Partitioning the full set of outcomes for the condition in this branch// Partitioning the full set of outcomes for the condition in this branch
 ifif ((parentCollectionId parentCollectionId ==== bytes32bytes32((00)))) {{
 requirerequire((collateralTokencollateralToken..transferFromtransferFrom((msgmsg..sendersender,, addressaddress((thisthis)),, amount amount)),,
"could not receive collateral tokens""could not receive collateral tokens"));;
 }}

However, some tokens, like USDT, do not return a value, which will cause the transaction to

revert. https://etherscan.io/token/0xdac17f958d2ee523a2206206994597c13d831ec7#code

 // Forward ERC20 methods to upgraded contract if this one is deprecated// Forward ERC20 methods to upgraded contract if this one is deprecated
 functionfunction transferFromtransferFrom((address _fromaddress _from,, address _to address _to,, uint _value uint _value)) publicpublic whenNotPaused whenNotPaused
{{
 requirerequire((!!isBlackListedisBlackListed[[_from_from]]));;
 ifif ((deprecateddeprecated)) {{
 returnreturn
UpgradedStandardTokenUpgradedStandardToken((upgradedAddressupgradedAddress))..transferFromByLegacytransferFromByLegacy((msgmsg..sendersender,, _from _from,,
_to_to,, _value _value));;
 }} elseelse {{
 returnreturn supersuper..transferFromtransferFrom((_from_from,, _to _to,, _value _value));;
 }}
 }}

Suggestion:

It is recommended to replace transferFrom() with safeTransferFrom() to handle tokens

that do not return a value properly.

12/24

https://etherscan.io/token/0xdac17f958d2ee523a2206206994597c13d831ec7#code

Resolution:

This issue has been fixed. The client has adopted our suggestions.

13/24

CTO-2 The Protocol does not Support Fee-On-Transfer Tokens

Severity: Informational

Status: Acknowledged

Code Location:

conditional-tokens-contracts/contracts/ConditionalTokens.sol#135

Descriptions:

In the splitPosition() function, the protocol calls collateralToken.transferFrom() to transfer

a certain amount of tokens from msg.sender and then calls _batchMint() to mint the

corresponding amount of tokens to msg.sender .

ifif ((freeIndexSet freeIndexSet ==== 00)) {{
 // Partitioning the full set of outcomes for the condition in this branch// Partitioning the full set of outcomes for the condition in this branch
 ifif ((parentCollectionId parentCollectionId ==== bytes32bytes32((00)))) {{
 requirerequire((collateralTokencollateralToken..transferFromtransferFrom((msgmsg..sendersender,, addressaddress((thisthis)),, amount amount)),,
"could not receive collateral tokens""could not receive collateral tokens"));;
 }} elseelse {{
 _burn_burn((
 msgmsg..sendersender,,
 CTHelpersCTHelpers..getPositionIdgetPositionId((collateralTokencollateralToken,, parentCollectionId parentCollectionId)),,
 amountamount
));;
 }}
 }} elseelse {{
 // Partitioning a subset of outcomes for the condition in this branch.// Partitioning a subset of outcomes for the condition in this branch.
 // For example, for a condition with three outcomes A, B, and C, this branch// For example, for a condition with three outcomes A, B, and C, this branch
 // allows the splitting of a position $:(A|C) to positions $:(A) and $:(C).// allows the splitting of a position $:(A|C) to positions $:(A) and $:(C).
 _burn_burn((
 msgmsg..sendersender,,
 CTHelpersCTHelpers..getPositionIdgetPositionId((collateralTokencollateralToken,,
 CTHelpersCTHelpers..getCollectionIdgetCollectionId((parentCollectionIdparentCollectionId,, conditionId conditionId,, fullIndexSet fullIndexSet ^̂
freeIndexSetfreeIndexSet)))),,
 amountamount
));;
 }}

 _batchMint_batchMint((
 msgmsg..sendersender,,

14/24

 // position ID is the ERC 1155 token ID// position ID is the ERC 1155 token ID
 positionIdspositionIds,,
 amountsamounts,,
 """"
));;

If the collateralToken is a fee-on-transfer token, the protocol will receive fewer tokens than

expected, but it will mint more tokens to the user than it should.

Suggestion:

It is recommended to calculate the actual amount received by subtracting the protocol's

balance after the transfer from its balance before the transfer.

15/24

CTO-3 The collateralToken Lacks Validation

Severity: Informational

Status: Fixed

Code Location:

conditional-tokens-contracts/contracts/ConditionalTokens.sol#106

Descriptions:

In the splitPosition() function, the protocol does not validate the collateralToken , allowing

users to mint NFTs using any arbitrary ERC20 token they create.

 functionfunction splitPositionsplitPosition((
 IERC20IERC20 collateralToken collateralToken,,
 bytes32 parentCollectionIdbytes32 parentCollectionId,,
 bytes32 conditionIdbytes32 conditionId,,
 uintuint[[]] calldata partition calldata partition,,
 uint amountuint amount
)) external external {{
 requirerequire((partitionpartition..lengthlength >> 11,, "got empty or singleton partition""got empty or singleton partition"));;
 uint outcomeSlotCount uint outcomeSlotCount == payoutNumerators payoutNumerators[[conditionIdconditionId]]..lengthlength;;
 requirerequire((outcomeSlotCount outcomeSlotCount >> 00,, "condition not prepared yet""condition not prepared yet"));;

Suggestion:

It is recommended to verify that the collateralToken used matches the collateralToken in

the CTF exchange.

Resolution:

This issue has been fixed. The client has added the following check:

requirerequire((conditionCollateralconditionCollateral[[conditionIdconditionId]] ==== addressaddress((collateralTokencollateralToken)),, "collateral token"collateral token
mismatch"mismatch"));;

16/24

TRA-1 Draining the Order Maker's Funds without Providing any
Tokens in return

Severity: Major

Status: Fixed

Code Location:

ctf-exchange/src/exchange/mixins/Trading.sol#89-109

Descriptions:

In the _fillOrder() function, the protocol first transfers funds, deducting the fee, from

msg.sender to the order maker, and then transfers funds from the order maker to

msg.sender .

 // Transfer order proceeds minus fees from msg.sender to order maker// Transfer order proceeds minus fees from msg.sender to order maker
 _transfer_transfer((msgmsg..sendersender,, order order..makermaker,, takerAssetId takerAssetId,, taking taking -- fee fee));;

 // Transfer makingAmount from order maker to `to`// Transfer makingAmount from order maker to `to`
 _transfer_transfer((orderorder..makermaker,, to to,, makerAssetId makerAssetId,, making making));;

The calculation for takingAmount is as follows:

takingAmount takingAmount == makingAmount makingAmount ** takerAmount takerAmount // makerAmount makerAmount

Here:

makerAmount is the maximum amount of tokens to be sold by the maker.

takerAmount is the minimum amount of tokens to be received by the maker.

Let's assume the order maker wants to exchange 1e18 tokens for 3000 *1e6 tokens. Thus:

makerAmount = 1e18

takerAmount = 3000 * 1e6

The takingAmount calculation becomes:

takingAmount takingAmount == makingAmount makingAmount ** ((30003000 ** 1e61e6)) // 1e181e18

17/24

Now, if makingAmount is less than 1e18 / (3000 * 1e6) = 333333333 , the calculated

takingAmount will be zero. Since the fee is also based on the takingAmount , it will be zero

as well. As a result, the order maker will receive 0 tokens from msg.sender , but will transfer

333333333 wei token to msg.sender .

A malicious attacker can exploit this by initiating multiple transactions with such small

values, effectively draining the order maker's funds without providing any tokens in return.

Suggestion:

It is recommended to set a minimum fillAmount for users or to check that takingAmount

is greater than 0.

Resolution:

This issue has been fixed, and the client has removed the fillOrder function.

18/24

TRA-2 The Operator Executing Invalid Order Fills can Result in
Financial Losses

Severity: Minor

Status: Fixed

Code Location:

ctf-exchange/src/exchange/mixins/Trading.sol#89-109

Descriptions:

In the _fillOrder() function, the protocol first transfers funds, deducting the fee, from

msg.sender to the order maker, and then transfers the fillAmount from the order maker

to msg.sender .

 functionfunction _fillOrder_fillOrder((OrderOrder memory order memory order,, uint256 fillAmount uint256 fillAmount,, address to address to)) internal internal {{
 uint256 making uint256 making == fillAmount fillAmount;;
 ((uint256 takinguint256 taking,, bytes32 orderHash bytes32 orderHash)) == _performOrderChecks_performOrderChecks((orderorder,, making making));;

 uint256 fee uint256 fee == CalculatorHelperCalculatorHelper..calculateFeecalculateFee((
 orderorder..feeRateBpsfeeRateBps,, order order..sideside ==== SideSide..BUYBUY ?? taking taking :: making making,, order order..makerAmountmakerAmount,,
orderorder..takerAmounttakerAmount,, order order..sideside
));;

 ((uint256 makerAssetIduint256 makerAssetId,, uint256 takerAssetId uint256 takerAssetId)) == _deriveAssetIds_deriveAssetIds((orderorder));;

 // Transfer order proceeds minus fees from msg.sender to order maker// Transfer order proceeds minus fees from msg.sender to order maker
 _transfer_transfer((msgmsg..sendersender,, order order..makermaker,, takerAssetId takerAssetId,, taking taking -- fee fee));;

 // Transfer makingAmount from order maker to `to`// Transfer makingAmount from order maker to `to`
 _transfer_transfer((orderorder..makermaker,, to to,, makerAssetId makerAssetId,, making making));;

 // NOTE: Fees are "collected" by the Operator implicitly,// NOTE: Fees are "collected" by the Operator implicitly,
 // since the fee is deducted from the assets paid by the Operator// since the fee is deducted from the assets paid by the Operator

 emit emit OrderFilledOrderFilled((orderHashorderHash,, order order..makermaker,, msg msg..sendersender,, makerAssetId makerAssetId,, takerAssetId takerAssetId,,
makingmaking,, taking taking,, fee fee));;
 }}

19/24

However, the protocol does not check whether fillAmount > 0 . Since the person executing

the fillOrder is the operator, a malicious attacker can create multiple requests with a

fillAmount of 0, forcing the operator to execute these transactions. This leads to the

operator spending gas without any meaningful transaction, resulting in financial losses for

the operator due to the wasted gas fees.

Suggestion:

It is recommended to check that fillAmount > 0 .

Resolution:

This issue has been fixed, and the client will handle the validation off-chain.

20/24

TRA-3 Simplify Sending Fees

Severity: Minor

Status: Acknowledged

Code Location:

ctf-exchange/src/exchange/mixins/Trading.sol#242-273

Descriptions:

Trading._fillFacingExchange now transfers the fee from the contract to the operator on

every call. When multiple maker orders are processed, there is a fee transfer for every one of

them. The fee could be sent after all orders have been processed instead.

Suggestion:

It is recommended to send the fee after all orders have been processed.

21/24

TRA-4 Unable To Return Unexpected Tokens

Severity: Minor

Status: Acknowledged

Code Location:

ctf-exchange/src/exchange/mixins/Trading.sol#371-375

Descriptions:

Tokens that have been accidentally sent to the contract can not be recovered. Furthermore,

if either the collateral token or one of the outcome tokens has been accidentally sent to the

contract, the next executed taker order will receive these tokens due to the implementation

of Trading._updateTakingWithSurplus .

 functionfunction _updateTakingWithSurplus_updateTakingWithSurplus((uint256 minimumAmountuint256 minimumAmount,, uint256 tokenId uint256 tokenId))
internal internal returnsreturns ((uint256uint256)) {{
 uint256 actualAmount uint256 actualAmount == _getBalance_getBalance((tokenIdtokenId));;
 ifif ((actualAmount actualAmount << minimumAmount minimumAmount)) revert revert TooLittleTokensReceivedTooLittleTokensReceived(());;
 returnreturn actualAmount actualAmount;;
 }}

Suggestion:

It is recommended to add a function to return the user's token.

22/24

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

23/24

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

24/24

	583_page1.pdf
	583_page2.pdf

