
Prepared for
Jeff Z
Opinion Labs

Prepared by
Qingying Jie
Jisub Kim
Zellic

October 31, 2024

Prediction Market
Smart Contract Security Assessment



PredictionMarket Smart Contract Security Assessment October 31, 2024

Contents About Zellic 4

1. Overview 4

1.1. Executive Summary 5

1.2. Goals of the Assessment 5

1.3. Non-goals and Limitations 5

1.4. Results 6

2. Introduction 6

2.1. About PredictionMarket 7

2.2. Methodology 7

2.3. Scope 9

2.4. Project Overview 9

2.5. Project Timeline 10

3. Detailed Findings 10

3.1. Lack of access-control modifier on setting voter 11

3.2. Typographical error in the remove function causes inconsistent state 13

3.3. Incorrect rewardRate calculation 15

3.4. Lack of comprehensive test suite 17

3.5. The setVrfCoordinator does not set the state variable coordinator 19

3.6. Snapshots are updated after the balance changes 21

3.7. The effectiveStake used to calculate the slash amount is not capped 23

3.8. Voters can register or deregister during the voter-selection period 26

Zellic © 2024 ← Back to Contents Page 2 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

3.9. The ownermay use stakers' staked tokens as rewards 28

3.10. Picking a voter may fail 30

3.11. The re-picked randomVoterSerialNummay still be duplicated 32

3.12. Typographical error in setThresholds function causes no-op 34

3.13. Incorrect handling of ID and count 36

3.14. The settlementResolutionmay be incorrectly set when no one disputes 38

3.15. Centralized risk 40

3.16. Unused variables and functions 42

4. Discussion 42

4.1. Ambiguous functional behavior 43

4.2. Typographical errors 43

5. ThreatModel 43

5.1. Module: ConditionalTokenSettler.sol 44

5.2. Module: VoterRegistrar.sol 45

5.3. Module: VotingV2.sol 46

6. Assessment Results 49

6.1. Disclaimer 50

Zellic © 2024 ← Back to Contents Page 3 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2024 ← Back to Contents Page 4 of 50

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io


PredictionMarket Smart Contract Security Assessment October 31, 2024

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Opinion Labs from October 8th to October 11th, 2024.
During thisengagement, Zellic reviewedPredictionMarket'scode forsecurityvulnerabilities, design
issues, and general weaknesses in security posture.

This audit was a diff audit between following commits:

1. Git commit bc355791 ↗ in the main branch of the ctf-exchange/* repository, and Git
commit 2745c301 ↗ in themain branch of the Polymarket/ctf-exchange repository.

2. Git commit bc355791 ↗ in the main branch of the conditional-tokens-contracts/*
repository, and Git commit eeefca66 ↗ in the master branch of the
gnosis/conditional-tokens-contracts repository.

3. Git commit bc355791 ↗ in themain branchof theoptimistic-oracle/contracts/* folder, and
Git commit 6e9ab5fe ↗ in themaster branch of the UMAprotocol/protocol repository.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Could an on-chain attacker drain user funds?
• Could amalicious user disrupt the voting system?
• Are the libraries implemented correctly?
• Could an on-chain attacker conduct a successful a flash-loan attack?

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Front-end components
• Infrastructure relating to the project
• Forked projects
• Key custody

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

Zellic © 2024 ← Back to Contents Page 5 of 50

https://github.com/OpinionLabs/prediction-market-smart-contract-v2/commit/bc355791ccffde709a4662f8ecc2ff8044cce669
https://github.com/Polymarket/ctf-exchange/commit/2745c3017400dbc1925711005fe76b018b999155
https://github.com/OpinionLabs/prediction-market-smart-contract-v2/commit/bc355791ccffde709a4662f8ecc2ff8044cce669
https://github.com/gnosis/conditional-tokens-contracts/commit/eeefca66eb46c800a9aaab88db2064a99026fde5
https://github.com/OpinionLabs/prediction-market-smart-contract-v2/commit/bc355791ccffde709a4662f8ecc2ff8044cce669
https://github.com/UMAprotocol/protocol/commit/6e9ab5fe2f6d32b975497423104749c490b1c7e9


PredictionMarket Smart Contract Security Assessment October 31, 2024

1.4. Results

During our assessment on the scoped PredictionMarket contracts, we discovered 16 findings. One
critical issue was found. Three were of high impact, nine were of medium impact, one was of low
impact, and the remaining findings were informational in nature.

Additionally, Zellic recorded its notes and observations from the assessment for the benefit of
Opinion Labs in the Discussion section (4. ↗).

Breakdown of Finding Impacts

Impact Level Count

■ Critical 1

■ High 3

■ Medium 9

■ Low 1

■ Informational 2

Zellic © 2024 ← Back to Contents Page 6 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

2. Introduction 2.1. About PredictionMarket

Opinion Labs contributed the following description of PredictionMarket:

Opinion Labs democratizes access to global trading by eliminating cross-market frictions and
providing a seamlessly integrated platform with unified liquidity. We are building the world's
opinion protocol and creating a new trading paradigm. Opinion Labs enables anyone to create
any predictions using any token, in a decentralized, permissionless way. We empower users
to predict, trade, and verify truth like never before.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomicsordangerousarbitrageopportunities. To thebestofourabilities, timepermitting,
we also review the contract logic to ensure that the code implements the expected
functionality as specified in the platform's design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of the contract's interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks: for example, flash loan attacks, oracle price manipulation,
MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no

Zellic © 2024 ← Back to Contents Page 7 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an "Informational"
findinghigher thana "Low"finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or are
not directly related to the scoped contracts itself. These observations — found in the Discussion
(4. ↗) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2024 ← Back to Contents Page 8 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

2.3. Scope

The engagement involved a review of the following targets:

PredictionMarket Contracts

Type Solidity

Platform EVM-compatible

Target prediction-market-smart-contract-v2

Repository https://github.com/OpinionLabs/prediction-market-smart-contract-v2 ↗

Version bc355791ccffde709a4662f8ecc2ff8044cce669

Programs conditional-tokens-contracts/*
optimistic-oracle/contracts/*
ctf-exchange/*

2.4. Project Overview

Zellic was contracted to perform a security assessment for a total of four person-days. The assess-
ment was conducted by two consultants over the course of four calendar days.

Zellic © 2024 ← Back to Contents Page 9 of 50

https://github.com/OpinionLabs/prediction-market-smart-contract-v2


PredictionMarket Smart Contract Security Assessment October 31, 2024

Contact Information

The following project managers were associ-
ated with the engagement:

Jacob Goreski
EngagementManager
jacob@zellic.io ↗

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Qingying Jie
Engineer
qingying@zellic.io ↗

Jisub Kim
Engineer
jisub@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

October 8, 2024 Kick-off call

October 8, 2024 Start of primary review period

October 11, 2024 End of primary review period

Zellic © 2024 ← Back to Contents Page 10 of 50

mailto:jacob@zellic.io
mailto:chad@zellic.io
mailto:qingying@zellic.io
mailto:jisub@zellic.io


PredictionMarket Smart Contract Security Assessment October 31, 2024

3. Detailed Findings 3.1. Lack of access-control modifier on setting voter

Target VotingV2

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

The VotingV2 contract contains two critical functions — votersPickedSuccessCallback and vot-
ersPickedFailureCallback—that are responsible for setting the voters for a specific trial andhan-
dling failures in voter selection.

function votersPickedSuccessCallback(
uint256 requestId, address[] calldata voters

) external override {
// emit event - VotingActionRequired(requestId, voters);
// update the jury of the specific "trial" corresponding to the requestId
_setVoter(voterRequest[requestId], voters);

}

function votersPickedFailureCallback(uint256 requestId) external override {
// set the requestId to failed
uint32 roundId = voterRequest[requestId];
if (roundId > 0) {

delete voterRequest[requestId];
delete roundRequest[roundId];

emit VoterRequestFailed(roundId, requestId);
}

}

However, these functions lack proper access-control modifiers, such as onlyAuthorized or on-
lyVoterRegistrar, which means they can be called by any external account. This allows any user
to manipulate the voter-selection process by arbitrarily setting or deleting voters, potentially com-
promising the integrity of the voting system.

Impact

An arbitrary user can call andmanipulate the voter selection.

Zellic © 2024 ← Back to Contents Page 11 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

Recommendations

Consider adding appropriate access-control modifiers.

Remediation

This issue has been acknowledged by Opinion Labs, and a fix was implemented in commit
72635a9d ↗.

Zellic © 2024 ← Back to Contents Page 12 of 50

https://github.com/OpinionLabs/prediction-market-smart-contract-v2/commit/72635a9d85a454c5d9b9a93c9b3600ef8d9d22fb


PredictionMarket Smart Contract Security Assessment October 31, 2024

3.2. Typographical error in the remove function causes inconsistent state

Target DynamicArray

Category CodingMistakes Severity High

Likelihood High Impact High

Description

In the remove() function of the DynamicArray library, there is a typowhere an assignment operator
(=) was intended, but an equality check operator (==) is used instead. This mistake leads to a no-
operation (no-op), and the state variable self.contains is not updated as intended — specifically,
this code:

function remove(Data storage self, uint256 _id) internal {
// [..]
self.contains[self.items[index].data] == 0; // here

}

Impact

This typo prevents the remove() function from updating the contains mapping, which tracks
whether an item is present in the array. As a result, the item may still be considered present even
after it has been removed from the array, leading to inconsistent state and potential errors in any
logic that relies on the containsmapping.

Recommendations

Consider modifying this to an assignment operator properly.

function remove(Data storage self, uint256 _id) internal {
// [..]

self.contains[self.items[index].data] == 0;

self.contains[self.items[index].data] = 0;

}

Zellic © 2024 ← Back to Contents Page 13 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

Remediation

This issue has been acknowledged by Opinion Labs, and a fix was implemented in commit
72635a9d ↗.

Zellic © 2024 ← Back to Contents Page 14 of 50

https://github.com/OpinionLabs/prediction-market-smart-contract-v2/commit/72635a9d85a454c5d9b9a93c9b3600ef8d9d22fb


PredictionMarket Smart Contract Security Assessment October 31, 2024

3.3. Incorrect rewardRate calculation

Target Staker

Category Business Logic Severity High

Likelihood High Impact High

Description

The owner of the Staker contract can call the notifyRewardAmount function to set the amount of
voting tokens rewarded to all staked voters per second (i.e., the rewardRate).

The variable rewardDuration defines the duration of the reward distribution, and the periodFinish
is the timestamp when the reward distribution ends. If the owner calls the notifyRewardAmount
function after the reward distribution has ended, the rewardRate is correctly calculated as _amount
/ rewardsDuration.

However, if the function is called during an ongoing reward-distribution period, the total reward be-
comes thesumof thenewly addedamount and the remainingamount from thepreviousperiod. The
issue arises when the rewardRate is incorrectly calculated by using periodFinish as the denomi-
nator instead of rewardsDuration.

function notifyRewardAmount(uint256 _amount) external onlyOwner {
_updateReward(address(0));
if (block.timestamp >= periodFinish) {

rewardRate = _amount / rewardsDuration;
} else {

uint256 remaining = periodFinish - block.timestamp;
uint256 leftover = remaining * rewardRate;

rewardRate = (_amount + leftover) / periodFinish;

}

lastUpdateTime = uint64(block.timestamp);
periodFinish = block.timestamp + rewardsDuration;
// [...]

}

Impact

The reward should be distributed over the rewardDuration, but it is instead distributed incorrectly
based on the timestamp. This results in amuch lower rewardRate than expected.

Zellic © 2024 ← Back to Contents Page 15 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

Recommendations

Considerchanging theequation(_amount + leftover) / periodFinish to(_amount + leftover)
/ rewardDuration.

Remediation

This issue has been acknowledged by Opinion Labs, and a fix was implemented in commit
3117767d ↗.

Zellic © 2024 ← Back to Contents Page 16 of 50

https://github.com/OpinionLabs/prediction-market-smart-contract-v2/commit/3117767d9b35cf991f1319c4fd0d347e36977c27


PredictionMarket Smart Contract Security Assessment October 31, 2024

3.4. Lack of comprehensive test suite

Target All scoped contracts

Category CodeMaturity Severity High

Likelihood N/A Impact High

Description

During this audit, weobserved anumber of findings that affect the core logic of the codebase. Some
of thesefindings could result in the failureof aworkingproductionenvironment, even if nomalicious
attack is assumed.

When building a complex contract ecosystemwith multiple moving parts and dependencies, com-
prehensive testing is essential. This includes testing for both positive and negative scenarios. Pos-
itive tests should verify that each function's side effect is as expected, while negative tests should
cover every revert, preferably in every logical branch.

The project has very limited test coverage, especially for the code that has beenmodified or added
compared to the forked projects. It is important to test the invariants required for ensuring security
and also verify mathematical properties as specified in the documents.

Impact

This code has not been exhaustively tested, increasing the likelihood of potential bugs.

Recommendations

We recommend building a rigorous test suite that includes all contracts to ensure that the system
operates securely and as intended.

Good test coverage hasmultiple effects:

• It finds bugs and design flaws early (pre-audit or pre-release).
• It gives insight into areas for optimization (e.g., gas cost).
• It displays codematurity.
• It bolsters customer trust in your product.
• It improves understanding of how the code functions, integrates, and operates — for de-
velopers and auditors alike.

• It increases development velocity long-term.

The last point seems contradictory, given the time investment to create and maintain tests. To ex-

Zellic © 2024 ← Back to Contents Page 17 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

pandupon that, tests helpdevelopers trust their ownchanges. It is difficult to know if a code refactor
— or even just a small one-line fix—breaks something if there are no tests. This is especially true for
new developers or those returning to the code after a prolonged absence. Tests have your back
here. They are an indicator that the existing functionalitymost likely was not broken by your change
to the code.

Remediation

Opinion Labs introduced additional testing between commits 15111134 ↗ and c993ef9a ↗.

Zellic © 2024 ← Back to Contents Page 18 of 50

https://github.com/OpinionLabs/prediction-market-smart-contract-v2/commit/15111134ca2e0673dbec1bc78c5ddaf52ca5fc85
https://github.com/OpinionLabs/prediction-market-smart-contract-v2/commit/c993ef9a3b9e7e7ad9cf92da980d56fb33a7dae6


PredictionMarket Smart Contract Security Assessment October 31, 2024

3.5. The setVrfCoordinator does not set the state variable coordinator

Target VoterRegistrar

Category Business Logic Severity Medium

Likelihood Medium Impact Medium

Description

There are two state variables, coordinator and vrfCoordinator, in the contract VoterRegistrar.
They should point to the same VRF coordinator. The difference is that the coordinator is of type
IVRFCoordinatorV2Plus, and the vrfCoordinator is of type address.

IVRFCoordinatorV2Plus coordinator;
address public vrfCoordinator;

Theadmincanset thevalueofvrfCoordinator through thesetVrfCoordinator function. However,
there is no function to set the variable coordinator.

function setVrfCoordinator(address _vrfCoordinator) external onlyAdmin {
vrfCoordinator = _vrfCoordinator;

}

Additionally, the VoterRegistrar contract does not initialize the variable vrfCoordinator in the con-
structor.

constructor(
uint256 _subscriptionId,
address _vrfCoordinator,
bytes32 _keyHash

) VRFConsumerBaseV2Plus(_vrfCoordinator) {
coordinator = IVRFCoordinatorV2Plus(_vrfCoordinator);
subscriptionId = _subscriptionId;
keyHash = _keyHash;
_grantRole(ADMIN_ROLE, msg.sender);

}

Zellic © 2024 ← Back to Contents Page 19 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

Impact

The state variable coordinator is used in the _requestRandomVoters function to call the VRF coor-
dinator's requestRandomWords function, while the state variable vrfCoordinator is unused.

The coordinator cannot be updated. Meanwhile, updating vrfCoordinator will cause it to be in-
consistent with the coordinator, leading to confusion.

Recommendations

Since the contract VoterRegistrar inherits from the contract VRFConsumerBaseV2Plus, consider
using the variable s_vrfCoordinator and function setCoordinator defined in the contract VRF-
ConsumerBaseV2Plus, or add code to set coordinator to the setVrfCoordinator function.

Remediation

This issue has been acknowledged by Opinion Labs, and a fix was implemented in commit
5bb84492 ↗.

Zellic © 2024 ← Back to Contents Page 20 of 50

https://github.com/OpinionLabs/prediction-market-smart-contract-v2/commit/5bb84492db30fbd0674176b893f2732afe83e912


PredictionMarket Smart Contract Security Assessment October 31, 2024

3.6. Snapshots are updated after the balance changes

Target ERC20Snapshot

Category Business Logic Severity Medium

Likelihood High Impact Medium

Description

The ERC20Snapshot contract extends an ERC-20 tokenwith a snapshotmechanism. Users can re-
trieve the balances and total supply at the time a snapshot is created.

If a balance is not updated, the balance when a snapshot is created is the same as the current bal-
ance. But ifmint, burn, or transfer operations are to beperformed right after a snapshot, the balance
before the operationsmust be recorded, which reflects the balance at the time of the snapshot.

The _update function in the ERC20 contract contains the logic for updating the account balances
and total supply. The ERC20Snapshot contract overrides the _update function and appends the
logic for updating the snapshot after the balance change.

function _update(address from, address to, uint256 amount)
internal virtual override {
super._update(from, to, amount);

if (from == address(0)) {
// mint
_updateAccountSnapshot(to);
_updateTotalSupplySnapshot();

} else if (to == address(0)) {
// burn
_updateAccountSnapshot(from);
_updateTotalSupplySnapshot();

} else {
// transfer
_updateAccountSnapshot(from);
_updateAccountSnapshot(to);

}
}

Zellic © 2024 ← Back to Contents Page 21 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

Impact

Since the snapshot is updated after thebalancemodification, the function that is used toget thebal-
anceor total supply at a specifiedsnapshot timeactually returns thevalueafter thebalancechanges
at a certain time.

Recommendations

Consider moving the code for updating the snapshots to before calling super._update.

Remediation

This issue has been acknowledged by Opinion Labs, and a fix was implemented in commit
6c95d53b ↗.

Zellic © 2024 ← Back to Contents Page 22 of 50

https://github.com/OpinionLabs/prediction-market-smart-contract-v2/commit/6c95d53b8fa06b2b29cd82326f2624caa6aa50eb


PredictionMarket Smart Contract Security Assessment October 31, 2024

3.7. The effectiveStake used to calculate the slash amount is not capped

Target VotingV2

Category Business Logic Severity Medium

Likelihood High Impact Medium

Description

Voters selected in a round can commit a vote for a price request. The number of votes a voter can
cast depends on the amount of staked voting tokens. Additionally, to prevent a single voter from
having too much influence, the contract limits the maximum number of tokens in a single vote to
maxTokenPerVote.

function revealVote(
bytes32 identifier,
uint256 time,
int256 price,
bytes memory ancillaryData,
int256 salt

) public override nonReentrant {
// [...]

// This is capped at maxTokenPerVote to prevent a voter from having too
much influence.
uint128 effectiveStake = uint128(

Math.min(
voterStakes[voter].stake -

voterStakes[voter].pendingStakes[currentRoundId],
maxTokenPerVote

)
);

voteInstance.results.addVote(price, effectiveStake); // Add vote to the
results.

// [...]
}

In the function _updateAccountSlashingTrackers, the slashed amount is calculated based on the
voter's effectiveStake. But the effectiveStake is not capped here.

Zellic © 2024 ← Back to Contents Page 23 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

function _updateAccountSlashingTrackers(
address voter,
uint64 maxTraversals

) internal {
// [...]

uint256 effectiveStake = voterStake.stake -
voterStake.pendingStakes[trackers.lastVotingRound];

// effectiveStake should be capped per user by

// [...]

else if (participation == VoteParticipation.DidNotVote)
// The voter did not reveal or did not commit. Slash at noVote rate.
slash = -int256(

Math.ceilDiv(
effectiveStake * trackers.noVoteSlashPerToken,
1e18

)
);

// [...]
}

Impact

If the effectiveStake is larger than the maxTokenPerVote, the voter may receive more voting to-
kens or may have more voting tokens slashed. Meanwhile, since the totalVotes and totalStaked
arecalculatedusing thecappedeffectivestake, uncappedeffectivestake in the function_updateAc-
countSlashingTrackersmay also lead to inconsistencies in internal accounting.

Recommendations

Considerupdating thecalculationof theeffectiveStake in the function_updateAccountSlashing-
Trackers to the following code:

uint256 effectiveStake = Math.min(
voterStake.stake - voterStake.pendingStakes[trackers.lastVotingRound],
maxTokenPerVote

);

Zellic © 2024 ← Back to Contents Page 24 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

Remediation

This issue has been acknowledged by Opinion Labs, and a fix was implemented in commit
a20527a0 ↗.

Zellic © 2024 ← Back to Contents Page 25 of 50

https://github.com/OpinionLabs/prediction-market-smart-contract-v2/commit/a20527a02e4e8ba415639ab972f578965c7e6be3


PredictionMarket Smart Contract Security Assessment October 31, 2024

3.8. Voters can register or deregister during the voter-selection period

Target VoterRegistrar

Category Business Logic Severity Medium

Likelihood Low Impact Medium

Description

The owner of the VotingV2 contract can request to select voters for each round. This will send re-
quests to theChainlinkVRFcoordinator, and then thecoordinatorwill set thevoterswith the random
words through the fulfillRandomWords function.

The selection of voters mainly depends on the random words and the total number of voters. Dur-
ing the request-pending period, voters can still register and deregister, and voter registration and
deregistrationwill change the total number of voters. Thismeans that voter registration and dereg-
istration actions can slightly alter the result of the voter selection.

function fulfillRandomWords(
uint256 requestId,
uint256[] calldata _randomWords

) internal override {
// [...]
for (uint256 i = 0; i < _randomWords.length; i++) {

(uint256 randomVoterSerialNum, address voter) = _pickVoter(
_randomWords[i],
0

);
// [...]

}

function _pickVoter(
uint256 randomWord,
uint256 retryCount

) internal view returns (uint256, address) {
return voters.get((randomWord + retryCount) % voters.length());

}

Zellic © 2024 ← Back to Contents Page 26 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

Impact

While the transaction for fulfillRandomWords is pending, voters can know the selection result.
They can front-run the transaction to alter the result by registering or deregistering.

Note that the transactionwill be revertedwhen thevoters.length() is zero. Since the transaction is
reverted, the function votersPickedFailureCallbackwill not be called to clear the request record.
If the request record is not cleared, a new request cannot be initiated, and the coordinator will not
fulfill the same request again.

function fulfillRandomWords(
uint256 requestId,
uint256[] calldata _randomWords

) internal override {
// [...]

if (randomVoterSerialNum == 0) {
// send callback
VoterRegistrarCallbackRecipientInterface(

requests[uint256(requestId)].callbackRecipentAddress
).votersPickedFailureCallback(uint256(requestId));

emit RequestFullfilled(
uint256(requestId),
randomVoterAddresses,
false

);
return;

}

// [...]
}

Recommendations

Consider prohibiting registration or deregistration of voters while random voter requests are pend-
ing.

Remediation

This issue has been acknowledged by Opinion Labs, and a fix was implemented in commit
a2b3364b ↗.

Zellic © 2024 ← Back to Contents Page 27 of 50

https://github.com/OpinionLabs/prediction-market-smart-contract-v2/commit/a2b3364b3fc30ebd343366e6b4e2532333e65ef1


PredictionMarket Smart Contract Security Assessment October 31, 2024

3.9. The ownermay use stakers' staked tokens as rewards

Target Staker

Category Business Logic Severity Medium

Likelihood Low Impact Medium

Description

The notifyRewardAmount function can allocate a specified amount of voting tokens already in the
contract as a reward for the staked voters. And the voters canwithdraw rewards through the with-
drawRewards function.

Apart fromthevoting tokensusedas rewards, thecontractalsoholdsvoting tokensstakedbyvoters.
Since the total reward rewardRate * rewardsDuration is compared to the voting token balance of
the contract, it is possible for the owner to notify staked voting tokens as rewards.

function notifyRewardAmount(uint256 _amount) external onlyOwner {
_updateReward(address(0));

// [...]

require(rewardRate * rewardsDuration
<= votingToken.balanceOf(address(this)), "Reward amount > balance");

emit RewardAdded(_amount);
}

Impact

If a portion of the staked voting tokens ismistakenly notified as rewards and voters havewithdrawn
someof these rewards, the votersmight beunable tounstakedue toan insufficient amount of voting
tokens in the contract.

Recommendations

Consider comparing the total reward rewardRate * rewardsDuration to votingTo-
ken.balanceOf(address(this)) - cumulativeStake.

Zellic © 2024 ← Back to Contents Page 28 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

Remediation

This issue has been acknowledged by Opinion Labs, and a fix was implemented in commit
15111134 ↗.

Zellic © 2024 ← Back to Contents Page 29 of 50

https://github.com/OpinionLabs/prediction-market-smart-contract-v2/commit/15111134ca2e0673dbec1bc78c5ddaf52ca5fc85


PredictionMarket Smart Contract Security Assessment October 31, 2024

3.10. Picking a voter may fail

Target VoterRegistrar, DynamicArray

Category Business Logic Severity Medium

Likelihood Medium Impact Medium

Description

The function_pickVoteruses(randomWord + retryCount) % voters.length() to retrieveaspec-
ified voter.

function _pickVoter(
uint256 randomWord,
uint256 retryCount

) internal view returns (uint256, address) {
return voters.get((randomWord + retryCount) % voters.length());

}

However, the function get in the library DynamicArray requires an ID greater than zero, while the
range of (randomWord + retryCount) % voters.length() is [0, voters.length() - 1].

function get(
Data storage self,
uint256 _id

) internal view returns (uint256 id, address data) {
require(_id > 0 && _id <= self.count, "Invalid ID");
uint256 index = self.idToIndex[_id];
Item memory item = self.items[index];
return (item.id, item.data);

}

Impact

The transactionmay be reverted due to an invalid ID error.

Recommendations

Consider using the index to retrieve the voter.

Zellic © 2024 ← Back to Contents Page 30 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

Remediation

This issue has been acknowledged by Opinion Labs, and a fix was implemented in commit
72635a9d ↗.

Zellic © 2024 ← Back to Contents Page 31 of 50

https://github.com/OpinionLabs/prediction-market-smart-contract-v2/commit/72635a9d85a454c5d9b9a93c9b3600ef8d9d22fb, d4b34d62adb006d585e02cb43e7dabe2fabbbc1c


PredictionMarket Smart Contract Security Assessment October 31, 2024

3.11. The re-picked randomVoterSerialNummay still be duplicated

Target VoterRegistrar

Category Business Logic Severity Medium

Likelihood Medium Impact Medium

Description

In the contract VoterRegistrar, the function fulfillRandomWordswill randomly select voters one by
one based on the Chainlink VRF result. If it finds a duplicate, it will reroll once. However, the result
after the reroll may still be a duplicate.

function fulfillRandomWords(
uint256 requestId,
uint256[] calldata _randomWords

) internal override {
// [...]

for (uint256 i = 0; i < _randomWords.length; i++) {
(uint256 randomVoterSerialNum, address voter) = _pickVoter(

_randomWords[i],
0

);

// reroll if found duplicate
if (

randomVoterSerialNumMap[uint256(requestId)][
randomVoterSerialNum

]
) {

(randomVoterSerialNum, voter) = _pickVoter(_randomWords[i], 1);
}

// [...]
}

function _pickVoter(
uint256 randomWord,
uint256 retryCount

) internal view returns (uint256, address) {
return voters.get((randomWord + retryCount) % voters.length());

}

Zellic © 2024 ← Back to Contents Page 32 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

For example, there are four voters, and we want to pick three voters. Assume the _randomWords is
[2, 1, 1], and the voters.get function uses the index to retrieve the voter in the array. Then, vot-
ers.get(2) and voters.get(1) will become the first and the second voter, without duplication.
Next, the fulfillRandomWords function will pick voters.get(1). Since it finds the picked voter du-
plicate, it will then pick voters.get(2), but this is still a duplicate.

Impact

The number of voters selected in a roundmay be smaller than expected.

Recommendations

Consider rerolling and increasing the retryCount until there is no duplication.

Remediation

This issue has been acknowledged by Opinion Labs, and a fix was implemented in commit
d1e1d26e ↗.

Zellic © 2024 ← Back to Contents Page 33 of 50

https://github.com/OpinionLabs/prediction-market-smart-contract-v2/commit/d1e1d26eb6d235d69408c335880c717d898bbc5b


PredictionMarket Smart Contract Security Assessment October 31, 2024

3.12. Typographical error in setThresholds function causes no-op

Target VotingV2

Category CodingMistakes Severity Medium

Likelihood Low Impact Medium

Description

In the VotingV2 contract, the setThresholds() function is designed to allow the contract owner to
updatevarious threshold values, includingMaxTokenPerVote. However, due toacodingmistake, the
function does not correctly update the MaxTokenPerVote variable. Instead, it performs a no-op by
assigning the parameter newMaxTokenPerVote to itself, leaving the state variable MaxTokenPerVote
unchanged.

function setThresholds(
// [..]
uint128 newMaxTokenPerVote

) public override onlyOwner {
// [..]
newMaxTokenPerVote = newMaxTokenPerVote; // This is a no-op and does
nothing

}

Impact

ThemaxTokenPerVotevaluecannotbeupdatedand remains zero. Since themaxTokenPerVotevalue
is zero, the voter cannot unstake because the staked value will always be greater than or equal to
zero.

function _afterRequestUnstake(
address voter,
uint256 staked

) internal override {
require(!voterInfo[getCurrentRoundId()].voters[voter], "selected");
if (staked < maxTokenPerVote) {

voterRegistrar.unregisterVoter(voter);
}

}

Zellic © 2024 ← Back to Contents Page 34 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

Recommendations

Consider correcting the assignment in the setThresholds() function to properly update the Max-
TokenPerVote state variable with the new value provided by the function parameter.

function setThresholds(
// [..]
uint128 newMaxTokenPerVote

) public override onlyOwner {
// [..]

newMaxTokenPerVote = newMaxTokenPerVote;

maxTokenPerVote = newMaxTokenPerVote;

}

Remediation

This issue has been acknowledged by Opinion Labs, and a fix was implemented in commit
72635a9d ↗.

Zellic © 2024 ← Back to Contents Page 35 of 50

https://github.com/OpinionLabs/prediction-market-smart-contract-v2/commit/72635a9d85a454c5d9b9a93c9b3600ef8d9d22fb


PredictionMarket Smart Contract Security Assessment October 31, 2024

3.13. Incorrect handling of ID and count

Target DynamicArray

Category CodingMistakes Severity Medium

Likelihood Medium Impact Medium

Description

The DynamicArray library uses an idToIndexmapping to retrieve items by their IDs. However, the
item ID is based on a counter that decreases when an item is removed, potentially leading to dupli-
cate IDs. Since self.count decreases upon removal, an ID may become greater than the current
count. Consequently, the check require(_id > 0 && _id <= self.count, "Invalid ID") in the
get() and remove() functionsmay not accurately validate the IDs.

Here is proof-of-concept code of this issue:

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;

import {Test, console} from "forge-std/Test.sol";
import "../contracts/libraries/DynamicArray.sol";

contract DynamicArrayTest is Test {
using DynamicArray for DynamicArray.Data;
DynamicArray.Data public arrayData;

function testReAdd() public {
require(arrayData.add(address(0x1337)) != 0);
arrayData.remove(1);

// Add failed
require(arrayData.add(address(0x1337)) == 0);

}

function testDuplicateIds() public {
arrayData.add(address(0x11));
arrayData.add(address(0x22));

// remove the first item, so the self.count back to 1
arrayData.remove(1);

require(arrayData.idToIndex[2] == 0);

Zellic © 2024 ← Back to Contents Page 36 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

// This will overwrite the idToIndex[2] to 1
arrayData.add(address(0x33));
require(arrayData.idToIndex[2] == 1);

}
}

Impact

Duplicate IDs can cause incorrect retrieval or removal of items, leading to data inconsistencies
within the contract.

Recommendations

Consider using the index to retrieve the item.

Remediation

This issue has been acknowledged by Opinion Labs, and a fix was implemented in commit
72635a9d ↗.

Zellic © 2024 ← Back to Contents Page 37 of 50

https://github.com/OpinionLabs/prediction-market-smart-contract-v2/commit/72635a9d85a454c5d9b9a93c9b3600ef8d9d22fb


PredictionMarket Smart Contract Security Assessment October 31, 2024

3.14. The settlementResolutionmay be incorrectly set when no one disputes

Target OptimisticOracleV3

Category Business Logic Severity Low

Likelihood Medium Impact Low

Description

The settlementResolution records the resolution of the assertion. If the assertion was disputed
and configured to discard the oracle, the resolution should be false.

struct Assertion {
// [...]
bool settlementResolution; // Resolution of the assertion (false till
resolved).
// [...]

}

During the settlement of an assertion, if no one disputes, the settlementResolutionwill be set to
true. However, if the assertionPolicy.discardOracle is true, it will be treated as a dispute. And in
this case, the settlementResolution should be set to false.

function settleAssertion(bytes32 assertionId) public nonReentrant {
Assertion storage assertion = assertions[assertionId];
// [...]
EscalationManagerInterface.AssertionPolicy memory assertionPolicy
= _getAssertionPolicy(assertionId);
if (assertion.disputer == address(0)) {

// No dispute, settle with the asserter
require(assertion.expirationTime <= getCurrentTime(), "Assertion not

expired"); // Revert if not expired.
assertion.settlementResolution = true;

assertion.currency.safeTransfer(assertion.asserter, assertion.bond);
if (!assertionPolicy.discardOracle) {

_callbackOnAssertionResolve(assertionId, true);
emit AssertionSettled(assertionId, assertion.asserter, false,

true, msg.sender);
} else {

// discard as "dispute"

_callbackOnAssertionResolve(assertionId, false);

Zellic © 2024 ← Back to Contents Page 38 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

emit AssertionSettled(assertionId, assertion.asserter, true,
false, msg.sender);

}
}
// [...]

}

Impact

This could potentially affect off-chain programs and cause confusion.

Recommendations

Consider setting the value of assertion.settlementResolution according to the value of asser-
tionPolicy.discardOracle.

Remediation

This issue has been acknowledged by Opinion Labs, and a fix was implemented in commit
45b0aaf7 ↗.

Zellic © 2024 ← Back to Contents Page 39 of 50

https://github.com/OpinionLabs/prediction-market-smart-contract-v2/commit/45b0aaf716fda315492a439fdedb54119e54046c


PredictionMarket Smart Contract Security Assessment October 31, 2024

3.15. Centralized risk

Target VotingV2

Category CodingMistakes Severity Informational

Likelihood Low Impact Informational

Description

There is a privileged owner for the contract:

1. The owner has significant control over the voting process and can manipulate voter se-
lection via emergencyJuryPicking().

2. The owner can prevent voters from being selected by not calling requestVoterSet(),
effectively halting the voting process.

3. The owner can change the slashing library through setSlashingLibrary().

4. The owner can change themaximum number of rounds to roll via setMaxRolls().

Impact

The above introduces centralization risks that users should be aware of, as it grants a single point of
control over the system.

Recommendations

Werecommendclearly documenting this centralized design to informusers about the owner's con-
trol over the contract. This transparency enables users tomake informed decisions about their par-
ticipation in the project.

Additionally, outlining the specific circumstances under which the owner may exercise these pow-
ers can build trust and enhance transparency, and we also suggest implementing minimum and
maximum values for each setter function that restrict governance changes to a safe range.

Remediation

This issue has been acknowledged by Opinion Labs.

Opinion Labs introduced changes to address this issue in commit 83ae9839 ↗. However, we believe
that these changes do not fully mitigate the risk, as the admin can still assign the operator role to
themselves.

Zellic © 2024 ← Back to Contents Page 40 of 50

https://github.com/OpinionLabs/prediction-market-smart-contract-v2/commit/83ae983948d71df2752966884d5be95a62214356


PredictionMarket Smart Contract Security Assessment October 31, 2024

To address this, potential solutions could include using a multi-signature wallet, restricting admin
functions, limiting the protocol parameters, or redesigning the architecture. However, as this find-
ing is evaluated as informational, centralized control may be considered a deliberate design choice
rather than a critical issue.

Opinion Labs states that they will use amulti-signature wallet for admin.

Zellic © 2024 ← Back to Contents Page 41 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

3.16. Unused variables and functions

Target VoterRegistrar, Staker

Category CodeMaturity Severity Informational

Likelihood N/A Impact Informational

Description

There is an unused variable maxRetries in the contract VoterRegistrar.

uint16 public maxRetries = 10;

There are two unused functions, setDelegate and setDelegator, in the contract Staker, whose
codes are commented out.

function setDelegate(address delegate) external {
// voterStakes[msg.sender].delegate = delegate;
// emit DelegateSet(msg.sender, delegate);

}

function setDelegator(address delegator) external {
// delegateToStaker[msg.sender] = delegator;
// emit DelegatorSet(msg.sender, delegator);

}

Impact

Thismay compromise code readability and could consumemore gas fees.

Recommendations

Consider removing the unused functions and removing or integrating the unused variables into the
contract logic to ensure consistency and avoid potential confusion.

Remediation

This issue has been acknowledged by Opinion Labs, and a fix was implemented in commit
d1e1d26e ↗.

Zellic © 2024 ← Back to Contents Page 42 of 50

https://github.com/OpinionLabs/prediction-market-smart-contract-v2/commit/d1e1d26eb6d235d69408c335880c717d898bbc5b, 5f6e772bdeb117d58f263d2a05d90f0d39909983


PredictionMarket Smart Contract Security Assessment October 31, 2024

4. Discussion The purpose of this section is to document miscellaneous observations that we made during the
assessment. These discussion notes are not necessarily security related and do not convey thatwe
are suggesting a code change.

4.1. Ambiguous functional behavior

In the DynamicArray contract, the contains function will return true when _data is not contained,
which seems counterintuitive.

function contains(
Data storage self,
address _data

) public view returns (bool) {
return self.contains[_data] == 0;

}

This issue has been acknowledged by Opinion Labs, and a fix was implemented in commit
72635a9d ↗.

4.2. Typographical errors

Uponreviewing thecodebase, severalminor typographical errorswere identified. Theydonotaffect
code functionality but can lead to confusion and potential bugs.

In the contract VoterRegistrar,

• The event RequestFullfilled should be RequestFulfilled.
• The variable callbackRecipentAddress should be callbackRecipientAddress.
• The function parameter callbackRecipent should be callbackRecipient.

This issue has been acknowledged by Opinion Labs, and a fix was implemented in commit
e0c38969 ↗.

Zellic © 2024 ← Back to Contents Page 43 of 50

https://github.com/OpinionLabs/prediction-market-smart-contract-v2/commit/72635a9d85a454c5d9b9a93c9b3600ef8d9d22fb
https://github.com/OpinionLabs/prediction-market-smart-contract-v2/commit/e0c38969ab328edcfd42497ee975234271450dc0, b11c57ca3cf417681cbfc5476767f887b9f91495


PredictionMarket Smart Contract Security Assessment October 31, 2024

5. ThreatModel This provides a full threat model description for various functions. As time permitted, we analyzed
each function in thecontractsandcreatedawritten threatmodel for somecritical functions. A threat
model documents a given function’s externally controllable inputs and how an attacker could lever-
age each input to cause harm.

Not all functions in the audit scope may have been modeled. The absence of a threat model in this
section does not necessarily suggest that a function is safe.

5.1. Module: ConditionalTokenSettler.sol

Function: assertPredictionMarket(byte[32] questionId, uint256 outcome)

This function is called by the operator to assert the outcome of a predictionmarket's question.

Inputs

• questionId
• Control: Fully controlled by the caller with an OPERATOR_ROLE role.
• Constraints: None.
• Impact: Identifies thepredictionmarket question forwhich theoutcome isbe-
ing asserted.

• outcome
• Control: Fully controlled by the caller with an OPERATOR_ROLE role.
• Constraints: None.
• Impact: Represents the outcome being asserted for the question.

Branches and code coverage

Intended branches

• Create a new assertion.
Test coverage

• Transfer the required bond from the operator to the contract using the default currency
and bond amount obtained from the oracle.

Test coverage
• Assert the outcome, passing the encoded condition ID and outcome along with other
necessary parameters.

Test coverage
• Update the assertion records with the new assertionId.

Test coverage

Negative behavior

• Revert if the question does not exist.

Zellic © 2024 ← Back to Contents Page 44 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

Negative test
• Revert if outcome is not 1 or 2.

Negative test
• Revert if a previous assertion exists for the questionId and it is not finalized.

Negative test

5.2. Module: VoterRegistrar.sol

Function: getRequest(uint256 _requestId)

This function allows anyone to retrieve the details of the request, including whether it has been ful-
filled and the list of voters were selected.

Inputs

• _requestId
• Control: Fully controlled by the caller.
• Constraints: None.
• Impact: An ID to retrieve request information.

Branches and code coverage

Intended branches

• Return the fulfilled status and randomVoters array for the given _requestId.
Test coverage

Negative behavior

• Revert if the _requestId does not correspond to an existing request.
Negative test

Function: requestRandomVoters(uint32 totalRandomVoters, uint32 call-
backGasLimit, address callbackRecipent)

This function allows a requester to initiate a randomness request to select a specified number of
random voters. It interacts with the Chainlink VRF to obtain randomness.

Inputs

• totalRandomVoters
• Control: Fully controlled by the caller with a REQUESTER_ROLE role.
• Constraints: None.

Zellic © 2024 ← Back to Contents Page 45 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

• Impact: The number of voters that will be selected.
• callbackGasLimit

• Control: Fully controlled by the caller with a REQUESTER_ROLE role.
• Constraints: None.
• Impact: The gas limit for the VRF callback function.

• callbackRecipent
• Control: Fully controlled by the caller with a REQUESTER_ROLE role.
• Constraints: None.
• Impact: The address thatwill receive the callback once randomvoters are se-
lected.

Branches and code coverage

Intended branches

• Initiate the VRF request to select a specified number of randomvoters and return the re-
questId of the VRF request.

Test coverage

Negative behavior

• Revert if the caller does not have the REQUESTER_ROLE.
Negative test

• Revert if totalRandomVoters is greater than the number of registered voters.
Negative test

5.3. Module: VotingV2.sol

Function: commitVote(byte[32] identifier, uint256 time, bytes ancil-
laryData, byte[32] hash)

This function allows a selected voter to commit a vote for a specific price request during the commit
phase.

Inputs

• identifier
• Control: Arbitrary.
• Constraints: None.
• Impact: The price request's identifier that the voter is committing a vote for.

• time
• Control: Arbitrary.
• Constraints: None.

Zellic © 2024 ← Back to Contents Page 46 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

• Impact: The Unix timestamp of the price being voted on.
• ancillaryData

• Control: Arbitrary.
• Constraints: None.
• Impact: Arbitrary data appended to a price request to give the voters more
info from the caller.

• hash
• Control: Arbitrary.
• Constraints: None.
• Impact: Thekeccak256hashof theprice, salt, voteraddress, time,ancillary-
Data, current roundId, and identifier.

Branches and code coverage

Intended branches

• Commit the vote hash for the voter if all conditions aremet.
Test coverage

Negative behavior

• Revert if hash is zero.
Negative test

• Revert if the current phase is not the commit phase.
Negative test

• Revert if the voter is not selected for the current round.
Negative test

• Revert if the price request is not active.
Negative test

Function: emergencyJuryPicking(uint32 roundId, address[] jury)

This function allows the owner tomanually set the voter set for a specific round in case of an emer-
gency or if the automatic voter selection fails.

Inputs

• roundId
• Control: Fully controlled by the owner.
• Constraints: None.
• Impact: The voting round for which the voter set is beingmanually set.

• jury
• Control: Fully controlled by the owner.

Zellic © 2024 ← Back to Contents Page 47 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

• Constraints: None.
• Impact: The list of voters to be set for the specified round.

Branches and code coverage

Intended branches

• Set the voter set for the specified round using _setVoter.
Test coverage

Negative behavior

• Revert if the caller is not the owner.
Negative test

Function: requestVoterSet(uint32 totalRandomVoters, uint32 callback-
GasLimit)

This function allows the owner to request a set of random voters for the current voting round from
VoterRegistrar.

Inputs

• totalRandomVoters
• Control: Fully controlled by the owner.
• Constraints: None.
• Impact: The number of random voters to request.

• callbackGasLimit
• Control: Fully controlled by the owner.
• Constraints: None.
• Impact: The gas limit for the callback function in VoterRegistrar.

Branches and code coverage

Intended branches

• Request random voters if not already requested for the current round.
Test coverage

Negative behavior

• Revert if the caller is not the owner.
Negative test

• Revert if a voter set has already been requested for the current round.

Zellic © 2024 ← Back to Contents Page 48 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

Negative test

Function: votersPickedSuccessCallback(uint256 requestId, address[] vot-
ers)

This function is a callback invoked by VoterRegistrar when random voters have been successfully
selected.

Inputs

• requestId
• Control: Arbitrary.
• Constraints: None.
• Impact: the voter request for which voters have been selected.

• voters
• Control: Arbitrary.
• Constraints: None.
• Impact: The list of randomly selected voters for the specified request.

Branches and code coverage

Intended branches

• Updates the voter set for the associated round using _setVoter.
Test coverage

Function call analysis

• _setVoter(voterRequest[requestId], voters)
• What is controllable? requestId and voters.
• If the return value is controllable, how is it used and how can it go wrong?
Updates the voterInfo for the specified round with the selected voters — no
return value.

• Whathappens if it reverts, reenters, ordoesotherunusualcontrolflow? N/A.

Zellic © 2024 ← Back to Contents Page 49 of 50



PredictionMarket Smart Contract Security Assessment October 31, 2024

6. Assessment Results At the time of our assessment, the reviewed codewas deployed to the BaseMainnet.

During our assessment on the scoped PredictionMarket contracts, we discovered 16 findings. One
critical issue was found. Three were of high impact, nine were of medium impact, one was of low
impact, and the remaining findings were informational in nature.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2024 ← Back to Contents Page 50 of 50


	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Prediction Market
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Lack of access-control modifier on setting voter
	Typographical error in the remove function causes inconsistent state
	Incorrect rewardRate calculation
	Lack of comprehensive test suite
	The setVrfCoordinator does not set the state variable coordinator
	Snapshots are updated after the balance changes
	The effectiveStake used to calculate the slash amount is not capped
	Voters can register or deregister during the voter-selection period
	The owner may use stakers' staked tokens as rewards
	Picking a voter may fail
	The re-picked randomVoterSerialNum may still be duplicated
	Typographical error in setThresholds function causes no-op
	Incorrect handling of ID and count
	The settlementResolution may be incorrectly set when no one disputes
	Centralized risk
	Unused variables and functions

	Discussion
	Ambiguous functional behavior
	Typographical errors

	Threat Model
	Module: ConditionalTokenSettler.sol
	Module: VoterRegistrar.sol
	Module: VotingV2.sol

	Assessment Results
	Disclaimer


